U.S. Nuclear Power Plants: What Distance Is Safe?

Given the the nuclear reactor meltdown disaster in Fukushima Japan, and the local area Fallout contamination that is now entering the food chain and water systems there, I have constructed a location map of the current (and decommissioned) nuclear power reactors in the United States.


Without discussing For or Against nuclear power, it may be smarter and a better use of time to learn some lessons from what happened in Japan that led to the the Fukushima meltdown, and to consider the potential risk for those living in the U.S. near one of these reactors – should a worst-case-scenario occur.

The problem at Fukushima: All electrical power was lost to the plant (earthquake – tsunami – backup generators destroyed – battery backup dead). This led to a lack of cooling of fuel rods in the reactors, which then led to a meltdown situation.

The underlying issue was a complete lack of electrical power, power sufficient enough to run the powerful cooling pumps.

Taking a simple look at the risks that may exist around any nuclear power plant, including the locations in the U.S. map above, the worst-case-scenario is always going to be one where the ‘issue’ leads to complete power failure. Without electricity, any one of these nuclear reactors will melt down, just like Fukushima, or worse.

A nuclear power plant being what it is, we would like to think that there is the utmost highest regard and oversight for safety built in to the design, construction, and operation of each one. But still, we had the disaster in Japan.

Not being qualified to asses the nuclear risk of the ‘what if’ scenarios, I still cannot help but think, what if this or what if that were to occur over here in the U.S. for example.

What if a ‘Carrington Event‘ solar flare were to occur, like what had happened in 1859. Astrophysicists know that it WILL happen again, it’s just a matter of when. If an extreme solar event like that were to take down the electrical power grid, and-or damage electronic systems from its EMP effects,  how long would it be before any, some, most, or all of these nuclear power plants would runaway to meltdown?

What if a true EMP weapon, or weapons, were to detonate and take down all electrical systems of a region, or wider, what then? Are the backup generators and their associated electrical control systems impervious to EMP-type effects for example? What about the control systems of the reactors themselves, are they EMP proof?

What if the New Madrid fault zone were to unleash a magnitude 9+ earthquake, which geologists agree is possible, then how would the nuclear plants avoid catastrophe at the reactors in northern Arkansas, eastern Missouri, or others nearby?

What if the San Andreas tears loose in California, how will Diablo Canyon and San Onofre handle it?

What if there is an unforeseen ‘physical’ attack on one of these reactors? What can the containment vessels withstand with regards to missiles of various strengths?

What if there is a cyber ‘virus’ attack along the lines of the Stuxnet computer virus that attacked the Iranian nuclear development facilities?
These simple questions led me to create a map of all U.S. nuclear reactors, both operational and decommissioned, so to have a look see where the danger zones ‘might’ be, should a worst-case-scenario occur.

It is difficult to impossible to answer the question, “How far away is a safe distance from a nuclear reactor?”, so I’ve created 100 mile radius zones (200 mile diameter) around each nuclear plant to provide some visual perspective. Yellow zones are around decommissioned plants.

Remember, it’s all about the wind direction too. The prevailing winds in the U.S. are typically from west to east while normally dipping down into the south-central U.S. before bending back up the east coast.



Related Posts»

Leave a Reply